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Abstract

The paper presents our project focused on train-
ing an AI assistant for STEM education. We
highlight the rise of large language models
(LLMs) and their potential in solving complex
tasks. We note that while generalist models
have gained popularity, there is untapped po-
tential in developing specialized models that
provide expert assistance in specific domains.
We propose a model that specializes in STEM
education and can tutor EPFL students by ex-
plaining complex material in simple terms.

Our methodology involves collecting a dataset
of questions from EPFL exams and Stack Ex-
change. The questions are used to train a re-
ward model and a generative language model.
The reward model is trained to rank answer
generations based on criteria such as clarity,
correctness, completeness, and rigour. The gen-
erative model is fine-tuned using supervised
learning to generate clear and detailed answers.

Our results show that the fine-tuned model out-
performs the base model in terms of text sim-
ilarity metrics, indicating improved quality of
generated answers. However, the fine-tuned
model shows higher deviation from the reward
function, suggesting a misalignment with the
desired principles defined in the Constitution.

Overall, the paper presents our promising ap-
proach to training an AI assistant for STEM
education. The focus on specialized models
and the use of a Constitution-based AI provide
interesting insights into developing expert-level
guidance in specific domains. The limitations
and avenues for future work discussed by us
contribute to the understanding and potential
improvement of the proposed approach.

1 Introduction

Large Language Models (LLMs) have seen a
tremendous rise over the last few years, showing
astonishing capabilities for solving complex tasks
such as translation, reasoning, or answering elab-
orate questions. Online chatbots like ChatGPT

(OpenAI, 2022) have significantly popularized and
democratized their use, making it easy for anyone
to interact with AI and recognize its potential. How-
ever, despite the rapid proliferation of models such
as OpenAssistant (Köpf et al., 2023), Claude (Bai
et al., 2022), Alpaca (Taori et al., 2023), Vicuna
(Chiang et al., 2023), Koala (Geng et al., 2023),
Dolly (Conover et al., 2023), Falcon (von Werra
et al., 2023), and many others, most research efforts
so far have only been focused on developing gener-
alist models, that can serve well users with a wide
range of needs. While this is an important stepping
stone towards Artificial General Intelligence, we
believe that there is a wide unexplored potential
for models that specialize in specific domains, pro-
viding expert assistance to a smaller set of users
but with higher reliability. In this project, we focus
on the domain of STEM education, developing an
AI chatbot that can tutor EPFL students by mas-
tering their course content and explaining complex
material in simple and clear terms. To do that, we
use questions from EPFL exams to collect a high-
quality dataset of demonstrations and preferences,
ranking answers produced by ChatGPT (OpenAI,
2022) using ChatGPT itself, instructing it to favor
clear and rigorous answers with Constitutional AI
(Bai et al., 2022). We then enrich this data with an-
swers from Stack Exchange and use it to fine-tune
a Reward Model, starting from Microsoft’s De-
BERTaV3 (He et al., 2023), and a supervised pol-
icy, starting from OpenAI’s Distilled-GPT-2 (Sanh
et al., 2019). We evaluate our fine-tuned model
on text-similarity metrics (BLEU, Rouge) and on
the learned reward function. Our results show an
improvement over text-similarity metrics against
the base model.

The paper is organized as follows: we first re-
view existing literature and related work about
creation and fine-tuning of large language mod-
els. Secondly, we describe our approach to data
collection, training of the reward model, and super-



vised fine-tuning of the model. Finally, we show
some results we obtained from the evaluation of
our Assistant.

2 Related work

Collecting human data Modern Language Models
aligned for human dialogue largely follow some
form of the 3-step recipe theorized for InstructGPT
(Ouyang et al., 2022), i.e. (1) train a supervised
policy with demonstration data, (2) train a reward
model with comparison data, and (3) optimize
the supervised policy with reinforcement learning
using the reward model. This process heavily relies
on collecting high-quality data for demonstrations
and comparisons, a task that is usually carried
out by human annotators through crowdworking.
Such data collection, for example, is carried
out in Dolly (Conover et al., 2023) and LaMDA
(Cohen et al., 2022) for the supervised step, in
Sparrow (Glaese et al., 2022) for the reinforcement
learning step, and in OpenAssistant (Köpf et al.,
2023) and ChatGPT (OpenAI, 2022) for both.
More recently, however, alternative approaches
have been proposed to take humans out of the
loop, lowering the cost of data collection and
enabling it to happen at a larger scale. Anthropic’s
Claude (Bai et al., 2022) does so by prompting a
model to produce and rank generations following
a Constitution, i.e. a collection of rules and
principles that their Assistant should follow, and
through an iterative critique-revision process. Our
work directly builds on this approach, developing
a Constitution specifically targeted to STEM
education.

Imitating proprietary LLMs At the same time,
our project fits into the line of research that aims to
cheaply improve a weak open-sourced Language
Model by finetuning it on outputs from a stronger
model, such as a proprietary system like ChatGPT.
Alpaca (Taori et al., 2023) and Self-Instruct (Wang
et al., 2023) do so by fine-tuning LLaMA (Touvron
et al., 2023) with 52k instruction-following demon-
strations generated by ChatGPT. Vicuna (Chiang
et al., 2023) and Koala (Geng et al., 2023) use user
conversations with ChatGPT shared on the web.

3 Approach

3.1 Data Collection
The data collection step is a key part of our
methodology and constitutes the most original

piece of our project. We collect a novel dataset
based on questions from EPFL exams, which we
thus call EPFL dataset, and we complement it
with a sample of questions from Stack Exchange.
For each question in both, we produce a ranking
of answers, that we then use either as supervised
demonstrations or pairs of preferences for the
reward model. The present section only discusses
the collection of such rankings, while the process
of partitioning the datasets and casting them in
the correct form for the subsequent steps of our
pipeline is detailed in Section 4.1.

EPFL dataset The core of our training data is
made of questions from EPFL exams, which have
been collected across a variety of STEM subfields
across campus. For the course project of CS 552:
Modern Natural Language Processing, hundreds
of students have worked with different samples of
such questions with the task of prompting Chat-
GPT to come up with the best possible answers
for their sample. The results of this effort form a
dataset of 10835 interactions distributed over 4500
questions, which is where we start to gather our
training data. We replicate the method of Constitu-
tional AI (Bai et al., 2022), writing a constitution
targeted to STEM education that encapsulates the
key principles and rules that we want our Assistant
to follow. First, we remove all the questions with-
out a ground-truth solution or with only one answer,
which is not enough to produce a ranking. Then,
we process the answers to standardize them across
questions, combining them with a common prompt.
The key challenge in this process, in fact, is that
the strategies followed by students are vastly dif-
ferent, with a plethora of possible prompts, styles
of collecting answers, and numbers of iterations.
To create fair comparisons, we instead want gen-
erations for the same question to share a unique
prompt, and only differ in how they answer it. To
simplify this process, we assume that the last output
with role = Assistant from each interaction with
ChatGPT contains an answer to the exam’s orig-
inal question, regardless of the student’s prompt.
We empirically verify that this is true in a majority
of cases, because even when the prompting strat-
egy involves multiple rounds of iterative reasoning,
usually the last user prompt asks to summarize ev-
erything in a unique answer. We observe, however,
one recurrent pattern where this is not true, corre-
sponding to students asking the model to generate a



confidence score as their last instruction. Therefore,
we filter out all the interactions where the last user
instruction contains the word "confidence". Then,
we artificially produce new demonstrations from
those outputs by assuming that they all answer a
basic prompt that just repeats the exam’s question
and, if present, the multiple-choice options. We em-
phasize that this is done because our goal is not to
train an instruction-following Assistant, but rather
one that can be helpful in the domain of STEM
education. In other words, we are not primarily
interested in making sure that our Assistant follows
precisely the complicated instructions contained
in the prompts crafted by students, but rather we
want it to perform well in closed-book question-
answering, producing accurate, complete, and clear
answers for exam-like questions that an end user
might ask, doing so without needing such articulate
prompting strategies. Finally, we query ChatGPT
to rank the extracted answers based on our Con-
stitution and the ground-truth solutions, with the
following prompt:

Consider the following question from a
scientific exam:
QUESTION: {{QUESTION}}

These are the available options (more than
one can be correct!):
- {{OPTION 1}}
- {{OPTION 2}}
- ...

Now consider the following answers, pro-
duced by AI Assistants:
- {{DEMONSTRATION 1}}
- {{DEMONSTRATION 2}}
- ...

Finally, here is the correct answer, as written
in the exam solutions:
SOLUTION: {{SOLUTION}}

Your task is now to produce a ranking of
the AI answers, based on the following
parameters:
- Correctness (!!!). The answer should
generally correspond to the exam solution.
- Clarity. The answer should be clear and easy
to understand by students.

- Completeness. The answer should cover all
the relevant aspects of the question.
- Rigour. The answer should be rigorous and
precise, following the scientific standards and
logical reasoning.
- Fluency. The answer should be fluent and
well-written.
- Coherence. The answer should be self-
consistent and coherent, without referring to
ambiguous external sources.
- Harmlessness. The answer should not
contain any harmful or unethical content.

Notice that correctness is the most important
parameter, and it should be prioritized over
the others. Please only output a sequence of
{{N_DEMONSTRATIONS}} numbers, cor-
responding to the indices of the AI answers,
from the best to the worst. {{EXAMPLE}}
RANKING:

Where the green text is only included for
multiple-choice questions, and {{EXAMPLE}}
corresponds to an example output given the
number of demonstrations. For example, with 3
demonstrations the example is "For example, the
sequence ’312’ means that the best answer is the
third one, followed by the first one, and finally by
the second one." Notice that our constitution insists
on the characteristics that we want our Assistant
to have, and makes completely transparent the
criteria for producing the rankings. From an initial
set of 4500 questions (10835 demonstrations),
the filtering steps described previously leave us
with 3111 (8711 demonstrations). Out of them,
we obtain valid rankings from ChatGPT for 2836
questions (7752 demonstrations), corresponding to
a total of 7568 pairs.

Stack Exchange We augment our data with the
Stack Exchange Preferences (Lambert et al., 2023)
dataset, which contains questions and answers from
the Stack Exchange network. Since the dataset is
very large, and we are only interested in domains
that are related to STEM education, we filter only
for a small number of substacks corresponding to
the main STEM areas, that is: Computer Science,
Computer Science Theory, Cognitive Science, Biol-
ogy, Bioinformatics, Engineering, Electronics, Eco-
nomics, Earth Science, Math, Mechanics, Quan-
titative Finance, Quantum Computing, Physics,



Robotics, Statistics, and finally from StackOver-
flow. We subsample each of those substacks to get
approximately the same number of questions for
each, resulting in a total of 69959 questions. Each
answer in the filtered data comes with a score that
reflects its number of updates, plus a bonus if the
answer has been "accepted" by the user who posted
the question. We, therefore, use those scores to
produce a ranking of the answers for each question.
We argue that the augmentation with this dataset
is particularly relevant not only to increment the
size of our data but also to provide the model with
negative examples, i.e. bad generations, since the
quality of demonstrations in the EPFL dataset is
generally high.

3.2 Reward model

We cast the problem of training a reward model as a
modified regression, adopting the training objective
defined in Ouyang et al. (2022). That is, given a
model rθ parametrized by θ which takes in text
generations y to output a scalar score, we define
the loss function as:

L(θ) = −E(yw,yl)∼D[log(σ(rθ(yw)− rθ(yl)))]
(1)

Where (yw, yl) is a pair of winning and losing gen-
erations, D is our collected dataset of preferences,
and σ indicates a sigmoid function.

Architecturally, we fine-tune a pre-trained lan-
guage model and add a single linear layer on top
of it, replacing the language modeling mask to pre-
dict a scalar score. As starting model, we decided
to adopt Microsoft/deberta-v3-base (He et al.,
2023), an 86M-parameter version of DeBERTa
trained by Microsoft on a variety of text corpora.

3.3 Supervised fine-tuning

The main goal of supervised fine-tuning in our set-
ting, is to teach the pretrained language model to
give clear and detailed answers to the questions,
to be as helpful as possible to students. In other
words, we want its answers to follow closely the
principles of our Constitution. We start from a pre-
trained Distilled-GPT-2 (Sanh et al., 2019) model.
It is an English-language model pre-trained with
supervision, and was created using knowledge dis-
tillation and is a lighter and faster version of GPT-2
(Radford et al., 2019).

We fine-tune it on the task of generating answers
to STEM questions. As loss function, we use Cross
Entropy, and we train the model for 10 number of

epochs epochs with a batch size of 4. We use the
Adam optimizer (Kingma and Ba, 2017) with a
starting learning rate of 1e-5, and we use a sched-
uler that keeps the learning rate constant, after an
initial warmup period in which the rate increases
linearly between 0 and the initial value. We use the
HuggingFace transformers library (Wolf et al.,
2020) for the implementation of the model and the
training procedure. We are able to train in a super-
vised fashion because for both data sources, EPFL
and StackExchange, we have a "Ground truth" an-
swer.

The input given to the model during training
is the exchange between the human and the assis-
tant. The human question is marked The model
learns autoregressively to predict a token given the
previous ones. We apply masking to the label by
"hiding" the prompt. This way, we make the model
only learn to generate the answers, that come after
the keyword "Assistant:".

4 Experiments

4.1 Data split
We partition both our collected datasets into 4
splits, which were used for the different parts of
our project:

• The training dataset for the Reward model -
30% of the full datasets: It contains prefer-
ences in the form of (winning, losing) pairs.

• The training dataset for Supervised Fine-
Tuning - 30%: It contains demonstrations in
the form of (prompt, best_generation)

• The training dataset for Reinforcement Learn-
ing from Human Feedback - 30%: It only
contains prompts.

• The test dataset - 10% of the full datasets: It
was used to evaluate both our reward model
and our chat Assistant, at each stage of its
training.

The sampling was always done at the level of ques-
tions and not of demonstrations. For the EPFL
dataset, we sample the first training dataset and the
Test set from the set of questions for which our
Constitutional prompt fits the ChatGPT’s context
size (4096 tokens), and for which ChatGPT man-
aged to produce a valid ranking. For the other two
sets, we sample from all the remaining questions,
since we don’t need any rankings.



4.2 Evaluation method

For the evaluation, we used several metrics to as-
sess the performance of our models. These metrics
include ROUGE, BLEU, and the output of the re-
ward model. ROUGE (Lin, 2004) and BLEU (Pap-
ineni et al., 2002) are commonly used evaluation
metrics for text generation tasks, measuring the
similarity between the generated text and the refer-
ence text. So we compute the average values on the
test datasets, separately for the EPFL and the Stack-
Exchange cases. Secondly, in a previous phase of
the project we trained our Reward model on rank-
ings following the principles of our Constitution, so
we decided to create a metric for evaluation based
on such model. We compute the average reward
score given by our fine-tuned reward model both on
the Assistant’s generations and on the Ground truth
answers. Then, we check the difference this two
aggregate values. We claim that such a difference
is indicative of how closely our Assistant model
match the criteria the reward model was trained on.
In order to understand whether our fine-tuning pro-
cess improved the model, we use the base model
as a baseline to compare the metrics. Ideally, we
would also want to compare to alternative models
fine-tuned for the same task but most previous work
entails the presence of a context or the models are
very large, which makes the comparison unfair.

In table 1 we compare the results between:

• Our model, Distil-GPT-2 fine-tuned as de-
scribed in Section 3.3

• Pretrained Distil-GPT-2 model, before any
fine-tuning

4.3 Experimental details

In this section we report some relevant technical
details of the models that we have trained, in order
to ensure repeatability of results.
Reward model
In order to train the reward model we mix data
from the training sets of the EPFL dataset and
the Stack Exchange dataset, interleaving them to
increase variety and stability. We then evaluate
the model’s performance separately on the respec-
tive test sets. We use an AdamW (Loshchilov and
Hutter, 2019) optimizer with standard parameters
and a linear warmup period equal to 20% of our
training data, with a batch size of 4. To prevent
overfitting and stabilize the training, we apply gra-
dient clipping with a max norm of 1 and we add

a L2-regularization penalty to the loss defined in
Equation 1. In our first experiment we have chosen
a learning rate of 1× 10−5 and the regularization
parameter β = 0.001. During training, we noticed
a strong tendency of the model to overfit the train-
ing data, with the validation curve quickly reaching
a minimum after the first epoch. This seems to
be consistent with the literature, with the Instruct-
GPT (Ouyang et al., 2022) paper reporting similar
overfitting behavior after only one epoch. In a sec-
ond experiment we have reduced the learning rate
to 1×10−7 and increased the regularization param-
eter to β = 0.01. The training loss decreases more
slowly and the validation loss keeps decreasing,
but never reaches a value as low as the minimum
reached in the first experiment. Therefore, as our
final model we decided to adopt the one trained in
the first experiment after the first epoch, hence ap-
plying early stopping to recover the best checkpoint
on the validation set.
Supervised fine-tuning
For supervised fine-tuning, we started with a pre-
trained Distil-GPT-2 model and fine-tuned it on
the task of generating answers to STEM questions.
The loss function used was Cross-Entropy, and the
model was trained over 10 epochs with a batch size
of 4. The best model was selected based on the test
loss, which reached its minimum at the fifth epoch.
Figure 1 shows a breakdown of the loss curves for
the fine-tune learning. We have used a scheduler
for the learning rate which keeps it constant, after a
warmup period in which the learning rate increases
linearly between 0 and a value set at 1e-05. The
optimizer we used is Adam (Loshchilov and Hutter,
2019).

4.4 Results

The results of our experiments are presented in
Table 1, which compares the performance of the
DistilGPT-2 base model with the fine-tuned model
on both the EPFL dataset and the Stack Exchange
dataset. We evaluated the models using several
metrics, including BLEU and Rouge scores for text
similarity, as well as the reward deviation metric,
which measures the difference between the reward
function on the gold label and the generated se-
quence.

From the results, we can observe that the fine-
tuned model generally outperforms the base model
in terms of text similarity metrics (BLEU and
Rouge), indicating that the fine-tuning process im-



BLEU Rouge-1 Rouge-2 Rouge-l Reward deviation
DistilGPT-2 base, EPFL 0.0024 0.0115 0.0023 0.0077 0.4169
DistilGPT-2 finetuned, EPFL 0.0029 0.0150 0.0034 0.0099 1.0271
DistilGPT-2 base, StackExchange 0.0004 0.0135 0.0016 0.0077 0.5164
DistilGPT-2 finetuned, StackExchange 0.0006 0.0169 0.0022 0.0100 0.7674

Table 1: Comparison of the results obtained with the DistilGPT-2 model before and after fine-tuning, on the EPFL
and StackExchange datasets.

(a) Test loss on EPFL (b) Test loss on Stack (c) Train loss

Figure 1: The above graphs show the trend of the loss during fine-tuning of Distil-GPT2. It can be seen that at
around epoch 7 the model starts overfitting the training data, since the training loss is steeply decreasing but the
test one is increasing. We choose to retain the checkpoints at epoch 4, since at that point the model achieved the
minimum on the StackExchange dataset, and was close to the minimum for the EPFL dataset.

proves the quality of the generated answers. How-
ever, interestingly, we also see an increase in the
reward deviation metric for the fine-tuned model.
This suggests that although the fine-tuned model
performs better in terms of text similarity, it does
not necessarily converge to answers that follow the
Constitution learned by the reward function.

5 Conclusion

In conclusion, we have presented an approach to
developing an AI chatbot specialized in providing
expert assistance in STEM education. Our method-
ology involved collecting a high-quality dataset of
questions from EPFL exams and Stack Exchange,
and using these questions to fine-tune a reward
model and a generative large language model. We
trained the reward model to rank answer genera-
tions based on clarity, correctness, completeness,
rigour, fluency, coherence, and harmlessness.

Our approach shows promise in improving the
performance of AI chatbots in STEM education by
providing higher reliability and expert-level guid-
ance. The fine-tuned model demonstrated better
performance in terms of text similarity metrics, in-
dicating improved quality of the generated answers.
However, after fine-tuning the model showed worse
performance over the reward function we trained,
suggesting that the fine-tuned model did not con-

verge to the principles defined in our constitution.
As the reward function was not used in the fine-

tuning process, but it was only used for evalu-
tion, future work could explore the integration of
Reinforcement Learning from Human Feedback
(RLHF) techniques to optimize the model over the
reward function. This would enhance the system’s
adaptability and alignment with the desired princi-
ples of the constitution.

Additionally, incorporating user feedback and
conducting more extensive evaluations with human
users would be valuable for further improving the
system. By actively involving end-users in the
training process, we can ensure that the AI chatbot
meets their specific needs and preferences.

In summary, our work lays a foundation for de-
veloping AI assistants that provide expert-level
guidance in STEM education. While there are ar-
eas for improvement, our approach demonstrates
the potential of specialized AI models in enhancing
the learning experience and supporting students in
their educational journey.
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